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Abstract—This paper attempts to discover a better entropy-
based splitting criterion for the induction of the Decision Trees 
(DT) than the entropy-based splitting criteria known so far. 
Eight entropy-based splitting criteria along with the 
performance tests carried out by three DT built on their basis, 
were taken into account: unpruned DT, pessimistically pruned 
DT and error-based pruned DT. All of these DT types were 
trained on seven databases, and then executed on their test 
data. Our experiments highlight the very good performances 
achieved by the square information gain ratio1 splitting 
criterion, which has shown always a better behavior than the 
information gain ratio criterion used in C4.5 algorithm and 
than other six information entropy based splitting criteria. 

Keywords—splitting criteria, Decision Trees, classification 
error rate, information entropy 

I. BACKGROUND 

For classification and prediction problems Decision Trees 
(DT) algorithms are some of the most efficient and intuitive 
Data Mining methods. One of the most important steps in 
developing an algorithm for inducing a DT is the choosing of 
splitting criterion. The information, and information-related 
entropy, provided the necessary support for the development 
of efficient splitting criteria, and classical examples are given 
by the splitting criteria used in DT algorithms ID3 and C4.5 
(considered for a long time to be the most powerful Data 
Mining algorithm) developed by Ross Quinlan. Further 
developments, such as the Mántaras distance, have 
improved the performance of these entropy-based criteria.  

This paper attempts to discover a better entropy-based 
splitting criterion than the entropy-based splitting criteria 
known so far. For this, eight entropy-based splitting criteria 
along with performance tests carried out by three DT built on 
their basis, were taken into account: unpruned DT, 
pessimistically pruned DT and error-based pruned DT. All of 
these DT types were trained on seven databases, and then 
executed on their test data, which were completely unknown 
on the moment of DT training.  

The obtained results showed that although the 
information gain (IG) splitting criteria used in the ID3 
algorithm and the information gain ratio (IGR) used in the 
C4.5 algorithm achieved very good results, they were 
systematically surpassed by a normalized variant of another 
entropy-based splitting criterion, square information gain 
(SIG), namely square information gain ratio1 (SIGR1).  

Next, in section Materials and Methods, we present the 
splitting criteria and the seven databases used in the 
experiments in this paper. In section Experimental Results 
and Discussions, we present and discuss the classification 
performance obtained from DT induction experiments, 
pruning them using two pruning methods (error-based and 
pessimistic) and performing them on the test data. At the end 
of the paper there is a Conclusion section. 

II. MATERIALS AND METHODS 

Considering that F = {f1, f2,…, fi,…, fn} denotes the 
collection of n input independent features, and L denotes the 
dependent feature or the class label, we can define a schema 
R(F∪L) on the relationship represented by the training 
dataset. A feature or attribute can be either categorical or 
continuous (numeric). Categorical or qualitative attributes 
are features whose values can be placed into distinct 
categories. For a categorical attribute fi, v(fi) = {ai,1, ai,2, … , 
ai,|v(fi)|} will denote its domain values. We will denote by 
|v(fi)| the number of values fi can take. v(L)={c1, c2, … , 
c|v(L)|} will denote the values that the dependent attribute can 
take. Continuous features have an infinite number of values. 

The Cartesian product X = v(f1) ×v(f2) × … ×v(fi) × … 
×v(fn) of all input attribute domains is called the records 
space and is the set of all possible records. We will consider 
a fragment of m records as the training dataset, with xm = {x1, 
x2, …, xr, … , xm} expresses the fraction of the records 
matching to the values of the independent features, and L = 
L1, L2, …, Lr, … , Lm expresses the fraction of the m instances 
matching to the class labels.  

An instance r is the pair <xr, Lr>. I(R) = (<x1, L1>, <x2, 
L2>, …,<xr, Lr>, …, <xm, Lm>) denotes the training dataset, 
where xr∈ X, Lr∈ v(L), Lr = Lr(xr), and r can take on values 
of 1 up to m. IS

kcy= denotes the number of records from I 
with the class label ck, where k = 1.. |v(L)|, |I| is the total 
number of instances from I, and IIS

kcL /=  is the relative 

frequency of records with the class label ck in the I training 
dataset. Then the entropy of the I set is:  
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A decision tree is a tree-like structure in which root-node 
represents entire dataset, each internal node is splitted into 
two or more sub-nodes by a test on a feature, each edge 
represents the result of the test, and each leaf or terminal 
node represents a class label. If we choose the attribute fi to 
split a node, then |v(fi)| sub-nodes result, each one having 

IS
jii af ,=

 
instances from I, i.e., those instances of I that have 

the feature fi with the value ai,j, where j takes values from 1 
to |v(fi)|. The partition entropy IS

jii af ,=  of I is:  
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If IIS
jii af /

,=  denotes the relative frequency of the 

instances with value ai,j for the feature fi, then 
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defines the entropy of the splitting of I in |v(fi)| partitions, at 
the division of a node on the fi feature base. The difference:  
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expresses the information gain (IG) splitting criterion, as [1], 
and represents the information that is reached by splitting I 
on the basis of the attribute fi. In (4) E(fi, I), with following 
expression:  
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defines the potential information created by the segmentation 
of the dataset I based on the feature fi in |v(fi)| subsets 

IS
jii af ,= , where j takes values from 1 to |v(fi)|. The IG 

splitting criterion was used by Quinlan to implement the ID3 
algorithm.  

The criteria based on information entropy that we are 
discussing below are attempts to refine the IG criterion that 
prefers multi-valued attributes. Balanced information gain 

(BIG), as in [2], is an endeavor to balance IG's tendency to 
favor splittings with many paths:  
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We can notice that for binary divisions (i.e., |v(fi)| = 2), 
the BIG criterion coincides with the IG criterion, because, in 
this case, the denominator log2|v(fi)| is 1. By introducing 
quadratic entropy, as in [3], as:  
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and using the IG model of (4), we define another splitting 
criterion, namely, square information gain (SIG):  
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This criterion, similar to IG, undergoes from the same 
problems as this one, that is, it will be biased towards 
attributes with many values, which it will prefer in the 
detriment of those with few values. Due to the squaring, the 
negative behavior of the SIG criterion worsens in comparison 
to the IG criterion behavior. Therefore, following the model 
of balancing the IG criterion by the BIG criterion and for the 
SIG criterion, we will define a balanced variant called the 
balanced square information gain (BSIG). This criterion is 
an attempt to balance the tendency of SIG criterion to 
excessively favor the multiple paths splittings. The BSIG 
criterion has the following formula:  
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We note that for the binary splitting (i.e., |v(fi)| = 2), the 
BSIG criterion coincides with the SIG criterion, because, in 
this case, the denominator (log2|v(fi)|)2, has the value 1. 
Besides balancing, we can also eliminate the SIG criterion 
preference for multi-valued attributes by normalization. The 
normalization of the SIG criterion gives us two splitting 
criteria: square information gain ratio 1 (SIGR1) and square 
information gain ratio 2 (SIGR2). The formula of the SIGR1 
criterion is as follows:  
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The formula of the SIGR2 criterion is as follows:  
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To normalize the IG criterion, Quinlan proposed for C4.5 
the information gain ratio (IGR), as [1], that normalizes IG 
as follows:  
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is the potential information supplied by the splitting of the 
dataset I on the basis of the feature fi, in |v(fi)| subsets under 
the form IS

jii af ,= , where j takes values from 1 to |v(fi)|. We 

can notice that the IGR criterion is not defined if the 
denominator is zero. Also, the IGR criterion tends to favor 
the attributes for which the denominator is very small. 

Quinlan showed that the IGR criterion tends to behave better 
than the IG criterion, both in terms of precision and of the 
aspects of the classifier’s complexity, as [1].  

Reference [4] shows the Mántaras distance, a splitting 
criterion that constructs lower DT than the IGR criterion 
proposed by Quinlan for C4.5. A better performance of the 
proposed Mántaras criterion is particularly noticeable for 
records that contain attributes with many values. Using the 
Mántaras distance we define the Mántaras information gain 
ratio (MIGR) splitting criterion:  
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The experiments presented in this paper continue the 
research on the splitting criteria previously made on two 
databases: Census-Income (KDD) [5] and Forest Covertype 
[6]. The experiments in this paper focus on the following 
seven databases: 

Abalone database [7]: number of cases: 4177 (train = 
3133, test = 1044); number of attributes: 8 (continuous and 
categorical), and the class attribute with three values; missing 
values: none. 

Cylinder Bands database [7]: number of cases: 512 (train 
= 412, test = 100); number of attributes: 40 (continuous and 
categorical), and the class attribute with two values; missing 
values: in 302 cases. 

Landsat Satellite database from Statlog Project [7]: 
number of cases: 6435 (train = 4435, test = 2000); number of 
attributes: 36 (all continuous), and the class attribute with six 
values; missing values: none. 

Monk's Problem database (only Monk-1 problem) [7]: 
number of cases: 124 for training and 432 for testing; 
number of attributes: 6 (continuous), and the class attribute 
with two values; missing values: none. 

Adult database [7]: number of cases: 48,842 (train = 
32,561, test = 16,281); number of attributes: 15, and the class 
attribute with two values; missing values are confined to 
three attributes. There are 6 duplicates or conflicting cases.  

Census-Income (KDD) [7]: number of cases: 299,285 
(train = 199,523, out of which duplicated or contradictory 
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cases: 46,716; test = 99,762, out of which duplicated or 
contradictory cases: 20,936); number of attributes: 40 
(continuous and categorical), and the class attribute with two 
values.  

Forest Covertype database is in UCI KDD Archive 
(http://kdd.ics.uci.edu, copyright J. A. Blackard & Colorado 
State University): number of cases: 581,012 (train =15,120, 
test = 565,892); number of attributes 54 (continuous and 
categorical) and the class attribute with seven values; 
missing values: none.  

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

We conducted experiments on seven databases, each 
building three types of DT: unpruned, error-based pruned, or 
pessimistically pruned; each DT was tested on the test data. 
Each of the three types of DT was induced in eight variants 
using eight splitting criteria. For the performance test part, 
we chose to highlight a key point of algorithms based on DT, 
namely the splitting criteria that determine the attribute 
selection for establishing the test that decides the 
ramification of a node, trying to find the criterion that 
consistently proves the best behavior in classification and 
prediction. The tests revealed a diversity of performance. On 
some datasets certain criteria have proven their efficiency, 
while others have been more uniform in terms of the splitting 
criteria, but the pruning methods have been those that have 
shown different performance. Table I lists all values of the 
classification error rate on the test data for all the eight 
splitting criteria applied to seven databases, using three 
categories of DT: unpruned DT, pessimistically pruned DT, 
and error-based pruned DT. In Table I, the second to last line 
corresponds to the average of the classification error rates 
for each of the 8 splitting criteria, and the last line contains 
the standard deviation of the classification error rate on the 
test data. 

A. Average 
The values of the average classification error rates on the 

test data is presented on the second to last line in Table 1. It 
has been found that the DT induced with the SIGR1 
criterion best classifies, with an average classification error 
rate on the test data of 18.59%. The DT performances with 
the other criteria are placed at a distance, having values close 
to each other for the average of the classification error rate. 
The weakest average performance for the classification error 
rate is achieved by the DT built with the BSIG splitting 
criterion, having an average value of 31.12% for the 
classification error rate.  

B. Standard deviation 
The conclusions provided by arithmetic mean values are 

often not eloquent, because the arithmetic mean can smooth 
out extreme values, while the standard deviation indicates the 
way these values are grouped together. From the last line of 
Table I, we find that the SIGR1 criterion also has the smallest 
value for the standard deviation (14.11), so the lowest 
scattering of the classification error rate values on the test 
data around their average. This result indicates that the 

performance of the DT induced with the SIGR1 criterion is 
not affected too much by the database features. Table I 
shows that the other DT have higher values for the standard 
deviation of the classification error rate than the DT induced 
with the SIGR1 criterion. Note that the next criterion, which 
simultaneously obtains the second value at the average of the 
classification error rate (27.36%) and the second value at the 
standard deviation (21.94%), is the IGR (associated with the 
C4.5 algorithm).  

C. win/tie/loss 
In addition to the arithmetic mean, many authors (e.g., 

[8]) prefer the win/tie/loss method to compare the 
classification performance of the various algorithms used in 
experiments on different databases. This technique is based 
on counting cases where a classification model has achieved 
a better (win), equal (tie) or less (loss) performance than 
another model considered as reference. So we used 8 times 
Table I and every time we considered as reference another 
criterion  that  all  the  other  criteria  were  reported  using  the  

TABLE I.  CLASSIFICATION ERROR RATE ON TEST DATA FOR THE 3 
TYPES OF DT, 7 DATABASES, AND 8 SPLITTING CRITERIA [%] 

Database
Type of 
pruning

Splitting criterion 

SIGR1 IGR BIG IG MIGR SIGR2 SIG BSIG

Abalone 

unpruned 40.13 44.54 43.20 42.91 43.97 43.01 40.71 40.71

err-based 39.56 43.30 43.01 42.91 43.39 42.82 40.23 40.23

pess 39.94 43.87 42.91 42.72 43.49 42.72 40.23 40.23

Cylinder 
Bands 

unpruned 16.00 34.00 81.00 81.00 81.00 81.00 81.00 81.00

err-based 15.00 80.00 86.00 86.00 86.00 86.00 86.00 86.00

pess 15.00 80.00 86.00 86.00 86.00 86.00 86.00 86.00

Image 
Segmen-

tation 

unpruned 16.80 16.80 16.80 16.80 16.80 16.80 16.80 16.80

err-based 15.95 15.95 15.95 15.95 15.95 15.95 15.95 15.95

pess 16.80 16.80 16.80 16.80 16.80 16.80 16.80 16.80

Monk's 
Problem 

unpruned 0.00 11.11 10.65 10.65 10.65 11.57 12.50 12.50

err-based 0.00 11.11 13.89 13.89 13.89 10.19 12.50 12.50

pess 0.00 11.11 10.65 10.65 10.65 10.19 12.50 12.50

Adult 

unpruned 18.10 16.87 17.63 18.01 16.89 19.24 19.97 19.97

err-based 14.12 13.41 13.80 15.04 13.91 16.25 17.36 17.31

pess 16.69 15.52 16.70 16.88 16.03 18.21 18.94 18.94

Census 
Income 

unpruned 5.84 5.89 6.30 6.34 5.86 6.21 5.57 6.75 

err-based 4.84 4.81 4.66 5.14 4.72 5.31 5.57 5.57 

pess 5.33 5.06 5.76 5.57 5.15 5.73 6.03 6.03 

Forest 
Covertype

unpruned 36.91 34.91 33.17 33.17 33.97 36.71 39.36 39.36

err-based 36.74 34.57 32.60 32.60 33.65 36.37 39.03 39.03

pess 36.59 34.83 32.90 32.90 33.88 36.59 39.42 39.42

average 18.59 27.36 30.02 30.09 30.13 30.65 31.07 31.12

standard deviation 14.11 21.94 25.83 25.75 25.97 25.85 25.54 25.48
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win/tie/loss technique. For space reasons, I have not 
presented all the 8 tables, but only Table II that shows only 
the win/tie/loss column from each of the 8 tables.  

When Table II is read on lines, for example, on the IG 
criterion line, alongside the SIGR1 column, we find the 
win/tie/loss values as 4/3/14. This means that the IG criterion 
performs better than the SIGR1 criterion for the accuracy of 
classification on test data in 4 cases, and has an equal 
performance in 3 cases and a poor performance in 14 cases.  

When Table II is read on columns, for example, if we 
want to compare the BIG criterion with the IG criterion, we 
go to the BIG criterion column on the line corresponding to 
the IG criterion and read 4/12/5. These values tell us that the 
performance of the BIG criterion is better than the 
performance of the IG criterion in 5 cases, equal in 12 and 
weaker in 4.  

In Table III we summed up the win/tie/loss values from 
Table II, for each criterion, and presented them sorted in 
three ways. At first, descending based on values of win, that 
is, the number of cases in which that criterion was better than 
the others. Then ascending, according to the value of the 
loss, i.e., the number of cases in which that criterion had a 
lower performance than the other criteria. It is obvious that 
the criterion that had the least cases in which it behaved less 
well than the others should be higher. The last sorting of the 
win/tie/loss values shown in Table III is a descending sorting 
according to the value of the difference: win-loss.  

We consider that it is important for a criterion to have not 
only a high win value but also a high value of the difference: 
win-loss. This difference orders the criteria by placing higher 
than those that had a high value for win, but at the same time, 
a low value for loss. It can be seen that in any of the three 
types of ordering in Table III, the SIGR1 criterion is always 
in the first position. This leads to two conclusions: the SIGR1 
criterion has the highest number of cases when it has a better 
performance value than all the other criteria, and the SIGR1 
criterion presents the smallest number of cases when it has a 
lower performance value than the other criteria.  

Symmetrically to the SIGR1 criterion, which occupies the 
first place irrespective of the criterion chosen for ordering, 
the BSIG criterion always occupies the last place in Table III. 

TABLE II.  THE WIN/TIE/LOSS VALUES FOR THE CLASSIFICATION 
PRECISION, CONSIDERING EACH OF THE 8 CRITERIA A BENCHMARK 

COMPARISON FOR THE OTHER 7 

Criterion BIG SIG BSIG IGR SIGR1 SIGR2 MIGR 

IG 4/12/5 10/6/5 11/6/4 8/3/10 4/3/14 10/7/4 6/9/6 

 BIG 10/6/5 11/6/4 9/3/9 6/3/12 8/6/7 8/9/4 

  SIG 1/19/1 4/3/14 1/3/17 4/6/11 5/6/10 

   BSIG 3/3/15 0/3/18 3/6/12 4/6/11 

    IGR 8/3/10 13/3/5 9/3/9 

     SIGR1 15/4/2 10/3/8 

      SIGR2 5/6/10 

TABLE III.  GLOBAL VALUES FOR THE WIN/TIE/LOSS AT THE 
ACCURACY OF THE CLASSIFICATION, SORTED BY DIFFERENT CRITERIA 

# 
Cri-

terion
win/tie/ 

loss 
Cri-

terion 
win/tie/ 

loss 
 Cri-

terion
win/tie/ 

loss 

1 SIGR1 96/22/29 SIGR1 96/22/29  SIGR1 96/22/29 

2 IGR 78/21/48 BIG 57/45/45  IGR 78/21/48 

3 MIGR 58/42/47 MIGR 58/42/47  BIG 57/45/45 

4 BIG 57/45/45 IGR 78/21/48  MIGR 58/42/47 

5 IG 53/46/48 IG 53/46/48  IG 53/46/48 

6 SIGR2 46/38/63 SIGR2 46/38/63  SIGR2 46/38/63 

7 SIG 25/49/73 SIG 25/49/73  SIG 25/49/73 

8 BSIG 19/49/79 BSIG 19/49/79  BSIG 19/49/79 

Descending sort after 
win value 

Ascending sort 
after loss value 

 
Descending sort 

after win-loss 
difference value 

D. Geometric mean 
As a method of comparing the relative performance of 

two algorithms, some authors (e.g., [9]) propose the 
geometric mean of the ratio of the classification error rate for 
the two algorithms considered on several databases. 

The geometric mean of a set of ratios a1/b1, a2/b2, … , 
an/bn has the property that if it is higher than 1 (i.e., the 
values a1, a2, … , an correspond to a more efficient algorithm 
than the algorithm that obtains the values b1, b2, … , bn), then 
the geometric mean of the ratios b1/a1, b2/a2, …, bn/an is 
lower than 1 and vice versa. We considered that a1, a2, … , 
an represents the values of the classification error rate on 
the test data for an DT induced with a certain criterion on n 
databases and b1, b2, …, bn represents the values of the 
classification error rate on the test data for an DT induced by 
another criterion on the same n databases. We have 
processed 8 times the data in Table I by calculating the 
geometric mean of the ratio of the error classification rate, 
considering, in turn, as a reference, each criterion, that we 
compared with all the other 7 criteria. Due to the fact that 
this statistical indicator cannot be calculated if the 
classification error rate is 0, we have replaced in Table I the 
three occurrences of the value 0 in the Monk's Problem 
database for the SIGR1 criterion with a small value: 0.00001. 
After processing we obtained, for each of the eight criteria, 
two numerical values: the first represents the number of 
times the criterion considered as a reference had better values 
than the other criteria (win value), and the second value 
represents the number of times the criterion considered as a 
reference had values less good than the other criteria (loss 
value).There are no cases of equality. These two sequences 
of win & loss values are shown in Table IV. Table IV shows 

TABLE IV.  COMPARISON OF CLASSIFICATION ERROR RATE ON TEST 
DATA BASED ON GEOMETRIC MEAN 

Cri-
terion 

SIGR1 IGR MIGR BIG IG SIGR2 SIG BSIG 

win 7 6 5 4 3 2 1 0 

loss 0 1 2 3 4 5 6 7 
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that the performances of DT built with the SIGR1 criterion 
surpass the performances of the DT built with the other 7 
criteria both in the win column and in the loss column, in all 
the 21 cases considered in the experiments.  

IV. CONCLUSIONS 

The information entropy splitting criteria have been 
developed while trying to improve the IG criterion proposed 
for the ID3 algorithm. Our article presented comparatively 
the performances of classifying eight such criteria.  

Generally, it is considered that the best splitting criterion 
based on the information entropy is the IGR. Out of the eight 
criteria used in the classification over seven databases, our 
tests have highlighted another criterion, SIGR1, which 
systematically shows better classification performance than 
the IGR criterion. 

The SIG criterion favors many output attributes for the 
test, a problem inherited from the IG criterion on which it is 
based. The problem is aggravated by SIG due to the 
squaring. This situation is noticed in the results presented in 
Section III where the SIG criterion has less good 
performances than the IG criterion.  

The attempt to solve this problem led to the development 
of two normalized criteria: the SIGR1 and SIGR2 criteria. 
Performance tests have shown that only one of the two 
normalization variants obtains spectacular results: SIGR1. 
This criterion, as shown by the values obtained in Section III, 
has systematically the best classification behavior, always 
better than the behavior of the IGR criterion, which is always 
behind it, in second place.  

The other normalized version of the SIG criterion, the 
SIGR2 criterion, performs better than the SIG criterion, 
proving that criterion normalization has improved the 
performances, but the improvement is not as obvious as in 
the SIGR1 criterion. The SIGR2 criterion obtains modest 
performances, placing itself systematically on the 6th place 
among the 8 criteria considered. 

Due to the fact that the IG criterion favors the test with 
many outputs, it has been normalized by Quinlan who 
proposed, for the C4.5 algorithm, the IGR splitting criterion 
that normalizes IG. From the values presented in Section III 
we can observe the very good behavior of the IGR criterion 
and the fact that it is almost always present immediately after 
the SIGR1 criterion. 

The MIGR normalized criterion eliminates the preference 
of the IG criterion for multi-valued attributes. This fact is 
also demonstrated experimentally through the values that 
were presented in Section III. Thus, it can be observed that 
the MIGR criterion usually achieves better performances than 
the IG criterion. Instead, the MIGR criterion performs less 
well than the IGR criterion.  

Sometimes the performances of the MIGR criterion are 
surpassed by the BIG criterion. We see a better systematic 
position in the rankings from Section III of the BIG criterion 
against the IG criterion. BIG criterion has been built so as to 
balance the tendency of the IG criterion to favor multi-path 

splitting. The values from the experiments show that the IG 
criterion has been improved by the BIG criterion. 

The balanced variant of the SIG criterion, the BSIG 
criterion, has failed to balance the SIG criterion's tendency to 
excessively favor many paths splittings. Thus, the BSIG 
criterion obtains the weakest performances in the 
experiments presented.  

Our experiments highlight the very good performances 
achieved by the SIGR1 splitting criterion, which has always a 
better behavior than the IGR criterion. After studying DT 
classification performance with the eight splitting criteria, for 
three types of DT, on seven databases, we find that, 
regardless of the method of comparison considered, the 
SIGR1 criterion induces the DT best performers.  

Our researches will continue with the testing of other 
splitting criteria on other datasets to confirm or invalidate the 
findings of this paper. 
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